HOME WORK I, HIGH-DIMENSIONAL GEOMETRY AND PROBABILITY, SPRING 2018

Due January 30. All the questions marked with an asterisk(s) are optional. The questions marked with a double asterisk are not only optional, but also have no due date.

Question 1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function, and m be a positive number. We make the following assumptions.

- F attains the absolute maximum at the point s_{0}, and for every $s \neq s_{0}$ we have $F(s)<$ $F\left(s_{0}\right)$.
- Further, assume that there exist numbers $a, b>0$ such that $F(s)<F\left(s_{0}\right)-b$ whenever $\left|s-s_{0}\right|>a$.
- Suppose that the integral $\int e^{F(s)} d s<\infty$.
- Suppose that F is twice differentiable in some neighborhood of s_{0}.
- Suppose that $F^{\prime \prime}\left(s_{0}\right)<0$.

Prove that when $m \rightarrow \infty$, the integral

$$
\int e^{m F(s)} d s=(1+o(1)) e^{m F\left(s_{0}\right)} \frac{\sqrt{2 \pi}}{\sqrt{-m F^{\prime \prime}\left(s_{0}\right)}}
$$

Hint 1: Observe that WLOG $s_{0}=F\left(s_{0}\right)=0$, and that F is equal to $-\infty$ outside of the support.

Hint 2: Pick any $\epsilon>0$ and note that one may find a $\delta>0$ so that for all $s \in(-\delta, \delta)$ we have

$$
\left|F(s)-\frac{F^{\prime \prime}(0) s^{2}}{2}\right| \leq \epsilon
$$

Hint 3: Find an estimate for

$$
\int_{-\delta}^{\delta} e^{m F(s)} d s
$$

Hint 4: Note that the assumptions imply that for every $\delta>0$ there is $\eta(\delta)>0$ such that $F(s)<F\left(s_{0}\right)-\eta(\delta)$;

Hint 5: Find an estimate for $\int_{\delta}^{\infty} e^{m F(s)} d s$ and $\int_{-\infty}^{-\delta} e^{m F(s)} d s$; to do that, use the previous hint, and also note that $e^{m F(s)}=e^{(m-1) F(s)} e^{F(s)}$. Use the assumption about the converging integral as well.

Hint 6: Carefully make sure that the assumptions allow you to let $m \rightarrow \infty$ and $\epsilon \rightarrow 0$.

Question 2. All the questions below require an answer up to a multiplicative factor of $1+o(1)$, when $n \rightarrow \infty$.
a) Find $\frac{\left|B_{2}^{n}\right|_{n}}{\left|B_{2}^{n-1}\right|_{n-1}}$.

Hint: Use the formula from Question 1 and the Fubbini theorem. Note that this method is alternative to the one we used in class to express $\left|B_{2}^{n}\right|_{n}$.
b) Find the volume of

$$
\left\{x \in \mathbb{R}^{n}:|x| \leq 2, x_{1} \in[a, b]\right\}
$$

where b1) $a=0, b=0.1$; b2) $a=-\frac{1}{\sqrt{n} \log n}, b=\frac{1}{n}$.
Hint: Use the expression for $\left|B_{2}^{k}\right|_{k}$ which we derived in class.
c) Using any method you like, find the volume of

$$
\operatorname{conv}\left(\left\{x \in \mathbb{R}^{n}:|x|<3, x_{2}=0\right\} \cup\left\{x \in \mathbb{R}^{n}:\left|x-e_{2}\right|<1, x_{2}=1\right\}\right)
$$

d) Let γ be the standard Gaussian measure on \mathbb{R}^{n} with density $\frac{1}{\sqrt{2 \pi^{n}}} e^{-\frac{|x|^{2}}{2}}$. For each $t \in(0, \infty)$, find $\gamma(\{x:|x|>t\})$, depending on t (find the best approximation you can for each range).
e) Let μ be the probability measure with density $C(n) e^{-|x|^{3}}$. Find $C(n)$.
f) Let μ be as above. Let $R \in(0, \infty)$ be such that $\mu\left(R B_{2}^{n}\right)=\frac{1}{2}$. Find R.

Question 3. Let A be a convex set in \mathbb{R}^{n} satisfying $x_{1}=0$ for all $x \in A$. Find the volume of $\operatorname{conv}\left(A, R e_{1}\right)$, in terms of $|A|_{n-1}, R$ and n.

Question 4. Prove that for any convex body K in \mathbb{R}^{n} and for any point $x \in \mathbb{R}^{n} \backslash K$, there exists a vector $\theta \in \mathbb{S}^{n-1}$ and a number $\rho \in \mathbb{R}$ such that $\langle x, \theta\rangle>\rho$ and for all $y \in K,\langle y, \theta\rangle<\rho$.

Question 5*. Prove that a convex hull of a finite number of points in \mathbb{R}^{n} either has an empty interior, or can be expressed as an intersection of a finite number of half spaces.

Question $6^{* *}$. Find a function $F: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for every symmetric convex body K in \mathbb{R}^{n} with $|K|_{n}=1$, there exists a vector $u \in \mathbb{S}^{n-1}$ (possibly depending on the body), such that $\left|K \cap u^{\perp}\right|_{n-1} \geq F(n)$.

Acceptable answers could be $F(t)=20 t^{-t}, F(t)=5^{-t}, F(t)=3 t^{-2}, F(t)=\frac{1}{t}, F(t)=\frac{10}{\sqrt{t}}$, $F(t)=100 t^{-\frac{1}{4}}, F(t)=\frac{1}{\log t}, F(t)=0.00001, F(t)=\sqrt{2}$, etc.

